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Abstract

Place-based environmental regulations target pollution-intensive sectors in polluted areas.
These regulations can improve local quality of life by reducing air pollution, while simultaneously
reducing labor demand. I develop a framework to study the heterogeneous effects on worker
welfare, considering changes in pollution exposure, sectoral and spatial labor distribution, and
unemployment. I focus on the U.S. Environmental Protection Agency’s regulation of ozone and
fine particulate air pollution during the 2000’s. First, I develop a triple-difference estimator to
measure the employment effects on college-educated and non-college-educated workers. I find
that, on average, regulation decreased employment by 7.6% among non-college-educated workers
and by 3.6% among college-educated workers. However, these average treatment effects vary
substantially depending on the intensity and type of regulation. I use this causal evidence to
develop empirical moments that serve to identify key parameters of a new general equilibrium
search and matching model with endogenous worker location choice and pollution exposure. I use
the model to evaluate the welfare effects of regulation in North Carolina. I find the effects differ
by worker skill level and geographic location. Low-skill workers in regulated areas experience
notable welfare losses. I show these losses can be mitigated by improving labor mobility across
sectors and areas.
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1 Introduction

Over the past few decades, governments worldwide have implemented place-based environmental

regulations aimed at reducing pollution in heavily polluted places. For example, the United States,

China, India, and Mexico all regulate fine particulate air pollution in highly populated areas. These

regulations improve human health and labor productivity (Bishop et al. (2023), Deryugina et al.

(2019), Aguilar-Gomez et al. (2022)). However, regulations also increase the cost of production

(Greenstone et al. (2012), Berman and Bui (2001)), leading to decreased employment and foregone

earnings (Walker (2013), Curtis (2018), Greenstone (2002)). The net effect on household welfare

depends on how workers sort themselves across polluting and non-polluting sectors in regulated

and unregulated places based, in part, on their relative preferences for environmental quality and

private consumption.

This paper develops a novel framework to evaluate the distributional welfare impacts of place-

based environmental regulations. The framework incorporates endogenous changes in pollution

exposure and worker allocation across employment status, sectors, and regions. I use the framework

to examine the implementation of the National Ambient Air Quality Standards (NAAQS) set by

the U.S. Environmental Protection Agency (EPA) to regulate air pollution in the United States.

The NAAQS establish maximum limits on human exposure to harmful air pollutants. The EPA

enforces these regulations by targeting pollution-intensive sectors in counties where pollution levels

exceed the standards.

I focus on the 1997 revisions to the NAAQS, for which the EPA lowered the maximum limit

on ozone pollution and introduced a new standard for fine particulate matter (PM2:5). The EPA

designated counties that exceeded the new ozone limit as “nonattainment” in 2004, targeting them

for enhanced regulation. Some of these same counties were also regulated for PM2:5 the following

year. Additionally, some counties were designated solely as nonattainment for PM2:5. The 1997

revisions generated plausibly exogenous variation across time and space as polluting sectors were

regulated in newly affected counties.

My analysis starts by providing evidence on the causal effect of regulation on employment. I

use Quarterly Workforce Indicators data and a triple difference-in-differences estimator that ac-

commodates heterogeneity in the timing and intensity of enforcement (Callaway and Sant’Anna

(2021), De Chaisemartin and D’haultfœuille (2023)). My econometric design incorporates multi-

ple regulatory treatments, variation in treatment timing, and multiple time periods. It identifies

the heterogeneous effects of regulation on employment among college-educated and non-college-

educated workers in polluting sectors of newly regulated counties.

I find that the regulatory expansion led to a 7.6% decrease in employment among non-college-

educated workers. In contrast, I find that employment for college-educated workers declined by

3.6%, although this result is not statistically distinguishable from zero. The impact of the regula-

tions varies with the type of pollutant and the intensity of enforcement. Specifically, regulations

targeting either ozone or PM2:5 alone did not have a significant effect on college-educated employ-

ment, but when both regulations were implemented together, college employment fell by 15% seven
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years after designation. In contrast, non-college employment experienced substantial declines, with

employment decreasing by 12% due to ozone regulations, 17% due to PM2:5 regulations, and 11%

in areas where both were enforced. The combined effect of both regulations may be smaller than

the average effect of each regulation individually because the effects are derived from different

treatment groups. Overall, these results suggest that the intensity of regulatory enforcement plays

a key role in shaping employment outcomes.

This causal evidence suggests that environmental regulation might have reduced welfare for

some workers in the regulated areas because of job losses. However, measuring the welfare effects

of regulation requires accounting for various other factors that are not easily identifiable through

a regression-based design. These include the regulation’s indirect effects on employment in unreg-

ulated sectors and areas, worker flows between employment and unemployment, worker movement

across regulated and unregulated sectors, worker movement across geographic areas, and any asso-

ciated changes in housing prices, wages, and pollution exposure.

To evaluate the distributional welfare effects of regulation, I develop a general equilibrium search

and matching model that incorporates labor market frictions, the spatial and sectoral distribution

of the labor force, and endogenous pollution exposure. The model combines elements of the search

and matching framework from the Diamond-Mortensen-Pissarides model (Pissarides (2000)) with

features of spatial equilibrium models (Rosen (1979), Roback (1982), Kline and Moretti (2013)). I

account for endogenous pollution exposure and the movement of local air pollutants by incorpo-

rating an integrated assessment model of atmospheric transport.1

The resulting model depicts local labor markets that vary in both productivity and amenities.

Each location has two sectors—clean and dirty—that produce sector-specific goods using college-

educated and non-college-educated labor. Firms in both sectors post job vacancies for each skill

type, but only the dirty sector emits air pollution. Workers differ by educational attainment

and derive utility from local amenities (including air quality), housing, and consumption of a

composite good produced from both clean and dirty sector products. They can be either employed

or unemployed, and those who are unemployed choose where to live and search for jobs. Once

matched with a job, employed workers supply a unit of labor inelastically and earn wages specific

to the sector and location. The government enforces a performance standard to limit emissions

from the dirty sector in high-pollution areas so that regulated sectors face abatement costs per unit

of output.

This framework allows regulations to affect the local labor market through two main channels.

First, abatement costs can reduce net output per worker, decreasing the value of filling vacant

positions. As a result, fewer vacancies are posted by regulated, polluting sectors, and job-finding

rates decrease in those sectors. Second, regulations can improve air quality, both in regulated

and nearby unregulated areas, as pollution disperses across the spatial landscape. Together, these

channels shape the spatial and sectoral distribution of labor, influencing unemployment rates,

1The Air Pollution Emission Experiments and Policy Version 3 (AP3) model links emissions from five key criteria
air pollutants to PM2:5 exposures, physical impacts, and associated monetary damages across the contiguous United
States at the county level (Muller and Mendelsohn, 2007, 2009; Muller et al., 2011).
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sector-specific employment, migration, and welfare.

I use the model to evaluate the welfare effects of regulation in the state of North Carolina.

First, I calibrate the model to replicate sectoral employment shares, relative wage differences, and

unemployment rates by worker skill in each of North Carolina’s 21 commuting zones (CZ) before the

1997 regulatory standards. I define a commuting zone to be regulated if any county within it was

regulated. Then, I use my reduced-form estimates for the causal effect of regulation on employment

to calibrate empirical latent abatement rates for ozone and PM2:5. Finally, I use the calibrated

model to evaluate the effect of the 1997 Standards on sectoral employment by skill, unemployment,

dirty-sector production, local amenities, and labor reallocation across sectors and zones.

The welfare effects differ for low- and high-skill workers in regulated and unregulated CZs. Low-

skill workers in regulated CZs experience a welfare loss of 1.38%, with this loss rising to 2.39%

in CZs specifically regulated for PM2:5. This suggests that stricter regulation is associated with

greater welfare reductions because I find that dirty sectors in PM2:5-regulated CZs had higher

emission abatement rates. In unregulated CZs, the welfare of low-skill workers improves by 1.46%.

For high-skill workers, welfare generally improves in regulated CZs due to reduced pollution. In

contrast, welfare declines for high-skill workers in unregulated CZs because those CZs experience

an increase in dirty sector production and air pollution.

To understand the forces driving the welfare effects, I use the model to measure the underlying

changes in employment, amenities, and dirty sector production. My findings suggest that the 1997

standards reduced low-skill employment within dirty sectors of regulated CZs by 8.58%. This

decline was partially offset by a 1.41% increase in clean sector jobs. Despite improvements in

amenities within regulated CZs, the reduction of job opportunities in the dirty sector led low-skill

workers to migrate to unregulated CZs where dirty sector jobs were more abundant. Unregulated

commuting zones experienced spillover effects, with a 4.97% increase in dirty sector employment and

a 1.15% increase in clean sector employment as low-skill workers moved from regulated CZs. Taken

together, these results suggest that the regulation’s effect on low-skill dirty sector employment may

have been considerably smaller than my reduced-form estimates for the relative treatment effect

on workers in polluting sectors of regulated counties due to endogenous labor reallocation.

For high-skill workers, my results suggest that regulation increased employment in both sectors

for most regulated CZs. My results also show that high-skill workers were more likely to relocate

to regulated CZs, as their pollution declined relative to unregulated CZs. This is partly driven by

a shift in dirty sector production to unregulated CZs.

To further investigate the role of labor mobility in mitigating negative welfare effects, I simulate

the model under two counterfactual scenarios that shut down channels for labor mobility. Without

spatial mobility, the welfare of low-skill workers decreases by 3.47%, and it drops even further

by 9.58% when both spatial and sectoral mobility are restricted. These restrictions hinder the

reallocation of low-skill workers and increase unemployment. As a baseline for comparison, low-

skill unemployment rates in regulated CZs rose slightly (0.05 percentage points) under the “free

mobility” case. The increase was substantially higher in each of the restricted mobility scenarios,
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reaching 0.76 percentage points with no residential mobility and 1.77 pp when workers are also

prohibited from switching between the clean and dirty sectors.

Overall, this counterfactual analysis illustrates that place-based environmental regulations can

produce uneven welfare impacts, with the ability to relocate or shift sectors signi�cantly in
uencing

worker welfare. For low-skill workers, in particular, the negative welfare impacts of place-based

regulation can be reduced substantially by moving across commuting zones and sectors. Thus,

my �ndings suggest that policies that increase labor mobility across sectors and/or space can

substantially o�set the negative welfare e�ects of regulations.

Related Literature

Overall, this paper advances the literature in three ways. First, I provide novel evidence that

non-college-educated workers in the regulated sector are more likely to experience a decrease in

employment due to regulation. Walker (2011), Curtis (2020), and Curtis (2018) estimated the

overall impacts of regulating air pollution on employment in the regulated sectors. My work reveals

how these impacts vary with worker skill. In addition, this paper is the �rst to document the e�ect

of PM2:5 regulation on employment. I also identify the heterogeneous e�ects of treatment intensity

by leveraging recent advances in econometric design and demonstrate how regulations on di�erent

air pollutants interact to a�ect employment outcomes for college and non-college graduates.

Second, my general equilibrium model provides a uni�ed framework to evaluate the welfare

e�ects of place-based policies that simultaneously a�ect local amenities and labor market outcomes.

Prior general equilibrium studies of environmental regulation mainly focused on the implications

of implementing a nationwide carbon tax (Hafstead and Williams III (2018), Fern�andez Intriago

(2019), Hafstead et al. (2022), Aubert and Chiroleu-Assouline (2019), Balistreri (2002), Shimer

(2013)). My framework complements this work by adding two important dimensions: spatial

labor mobility and changes in amenity exposure. These features o�er the potential to improve our

current understanding of the impacts of spatially heterogeneous regulation of other primary air

pollutants like ozone andPM2:5. Another strand of the recent GE literature uses spatial models to

examine the consequences of environmental regulations (Rudik et al. (2022), Hollingsworth et al.

(2024), Morehouse (2021), Aldeco et al. (2019)). In contrast to my work, these studies rely on a full-

employment assumption and abstract from heterogeneity in worker skill and the e�ects of regulation

on involuntary unemployment.2 My framework goes beyond analyzing wages to investigate how

worker welfare is a�ected by the impacts of regulation on unemployment and job-�nding rates.

My �ndings indicate that mobility constraints across di�erent sectors or regions greatly impact the

unemployment rate for low-skilled workers.

Finally, my framework examines the distributional e�ects of environmental regulations on low-

and high-skill workers, identifying which group is more likely to bear the costs or reap the bene�ts

of these policies. Low-skill workers in regulated zones experience welfare losses due to reduced dirty

sector employment, though mobility can help mitigate these losses by providing access to alternative

2Hollingsworth et al. (2024) incorporates the choice of remaining non-employed; however, this captures the impact
on worker transitions out of the labor force.
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job opportunities. In contrast, high-skill workers bene�t from welfare gains in regulated zones,

largely due to improved amenities. Di�erences in mobility between high- and low-skill workers

can either widen or narrow the gap in welfare outcomes, in
uencing how each group adapts to

regulatory changes.

The remainder of the paper is organized as follows: Section 2 outlines the key institutional

features of the National Ambient Air Quality Standards and the 1997 revision to the standards.

Section 3 describes the data used in the analysis. Section 4 details my empirical design and presents

results from my reduced-form analysis. Section 5 introduces the theoretical model for quantitative

analysis. Section 6 discusses the calibration strategy and assesses model �t. Section 7 reports my

estimate for how regulation on a�ected workers in North Carolina. Finally, Section 8 concludes.

2 Background

The Clean Air Act (CAA) of 1963 was a milestone in the history of environmental regulation

in the United States. It aimed to limit emissions of air pollutants to protect public health and

environmental quality. The CAA was amended several times. The 1970 Amendments empowered

The Environmental Protection Agency (EPA) to set the National Ambient Air Quality Standards

(NAAQS), which specify the maximum allowable ambient concentration of six criteria air pollutants:

Particulate Matter, Carbon Monoxide, Nitrogen Oxides, Sulfur Dioxide, Lead, and Ozone.

The 1977 CAA Amendments empowered the EPA to designate every county as either \attain-

ment" or \nonattainment" for each pollutant annually, based on whether the county's maximum

concentration exceeds the NAAQS. When a county is designated as nonattainment, the state must

develop a State Implementation Plan (SIP) to reduce the county's emissions below the NAAQS.

SIPs usually impose speci�c regulations on individual plants, mandating that existing polluting

facilities adopt the lowest achievable emission rate technologies, irrespective of cost.3 Moreover,

any new emissions from plant operations, whether due to new construction or expansion, must be

counterbalanced by reductions from other sources within the same county. The 1990 Amendments

further mandated that major sources of air pollutants must obtain an operating permit under the

Title V Operating Permit Program, regardless of location.

These regulations raise production costs for polluting plants in nonattainment counties com-

pared to those in attainment counties. Nonattainment counties have experienced declines in their

number of establishments and new plant openings (Curtis (2020), Becker and Henderson (2000)).

Additionally, county regulatory status can a�ect the location decisions of new polluting plants,

resulting in long-term spatial reallocation of polluting sectors from nonattainment to attainment

counties (Henderson (1996)).

My analysis focuses on a recent revision to the NAAQS for ozone and particulate matter. In

1997, the EPA tightened the ozone standards, causing 434 counties to be classi�ed as nonattainment

3Since the 1977 Amendments, large polluting plants in attainment counties are required to adopt the less costly best
available control technology (BACT), while plants in nonattainment areas face stricter regulations, higher abatement,
and operating costs, and more frequent inspections (Becker (2005), Becker and Henderson (2001)).
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Figure 1: County Regulatory Status

(a) 1992-2004

(b) 1992-2005

Note: The top �gure (Panel 1a) shows counties designated as nonattainment at some point between 1992 and 2004,
including those regulated for the 1997 ozone standards in 2004. Noncolored counties are attainment areas. Light yellow
counties were regulated for other pollutants during this period. Orange and maroon counties represent nonattainment
areas for the 1997 ozone standards in 2004, with maroon counties switching from attainment to nonattainment for
the �rst time in 2004. The bottom �gure (Panel 1b) shows counties designated as nonattainment from 1992 to 2005,
along with counties regulated for the 1997 P M 2:5 standards in 2005. Noncolored counties are attainment areas, and
light yellow counties were regulated for other pollutants during this period. Orange and maroon counties represent
nonattainment areas for the 1997 P M 2:5 standards in 2005, with maroon counties switching to nonattainment for
the �rst time in 2005.
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on July 15, 2004.4 Within this set, 98 counties entered nonattainment status for the �rst time,

while 327 were already out of attainment with the previous ozone standard.5 Figure 1a displays

counties classi�ed as nonattainment at any point between 1992 and 2004. Counties highlighted in

orange and maroon were regulated for ozone in 2004. The orange counties were regulated for ozone

prior to 2004, whereas the maroon counties switched from attainment to nonattainment for the

�rst time in 2004.

Additionally, on April 5, 2005, 208 counties were designated as nonattainment for the new

PM2:5 standards. However, only 23 of these counties entered nonattainment status for the �rst

time. Further, 24 of the counties that were �rst regulated for ozone in 2004 also exceeded the

PM2:5 standards in 2005 and became regulated for both pollutants.6 Figure 1b highlights counties

classi�ed as nonattainment at any point between 1992 and 2005. The counties marked in orange

and maroon were regulated forPM2:5 in 2005, and the maroon counties switched from attainment

to nonattainment for the �rst time in 2005.

Together, Figures 1a and 1b show how the 1997 revisions to the NAAQS created three sources

of variation in place-based environmental regulation. The �rst source of variation is temporal.

Some counties switched from attainment to nonattainment for the �rst time. This variation allows

me to make before-after comparisons within county-industry pairs while accounting for their time-

invariant unobserved characteristics. The second source of variation is geographic, as attainment

status varies across space in any given year. This allows for comparisons between county-industry

pairs while controlling for nationwide or sector-speci�c shocks, such as the Great Recession in 2008.

The �nal source of variation arises from plant-level di�erences within the same county. Only the

plants that emit the regulated pollutant are subjected to new regulations due to the change in

the county's regulatory status of that pollutant. This allows for comparisons between polluting

and nonpolluting sectors while controlling for unobservable county-by-sector characteristics. These

sources of variation contribute to a research design, outlined in Section 4, that investigates the

employment outcomes of workers in the polluting sectors of newly regulated counties, comparing

results before and after the regulations were implemented.

3 Data Sources

This section outlines the key data sources used in this paper. These sources enable a comprehensive

assessment of air pollution, regulatory status, and local labor market conditions.

The EPA's Green Book and AirNow Files

The EPA's Green Book reports each county's annual attainment status for each criteria pollutant.

4Prior to 1997, the ozone standard was 0.12 parts per million (ppm) over a 1-hour average concentration. The
EPA set the new standards at 0.08 ppm over an 8-hour average in 1997.

5336 of them were in attainment for the previous standards of di�erent criteria air pollutants. See https://www3.
epa.gov/airquality/greenbook/gbtcw.html for 8-Hour Ozone (1997) Designated Area/State Information.

6161 regulated counties were in attainment for the previous standards of di�erent criteria air pollutants. See
https://www3.epa.gov/airquality/greenbook/qbtcw.html for P M 2:5 (1997) Designated Area/State Information.
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I use these data to track the duration of each county's regulatory status for each criteria pollutant

following the 1997 NAAQS changes. These data underlie the maps of counties that are �rst-time

switchers into nonattainment status for ozone and/or PM2:5 in Figure 1a and Figure 1b.

To de�ne a set of attainment counties to be used as the control group in my analysis, I employ the

EPA's AirNow �les, which report the annual concentrations of air pollutants at outdoor monitoring

status across the US. Roughly one-third of US counties have outdoor monitors.7 However, these

monitored counties account for 83% of the US population. This is because monitors tend to be

placed in areas with relatively high populations and/or areas that are believed to have relatively

higher pollutant concentrations.8 Counties lacking monitors are technically classi�ed as attainment

counties, but it is standard in the literature to exclude them from regression analyses because their

pollution levels are not precisely measured, and they tend to be less populated rural areas that are

less appropriate as controls (e.g. Bishop et al. (2023)).

The EPA's Air Facility Subsystem (AFS)

I use the EPA's Air Facility Subsystem database to identify the polluting sectors in each county. The

AFS provides plant-level information on the speci�c pollutants covered by the plant's operating

permit and the corresponding regulatory program for which the permit is issued. However, the

date of permit issuance is not available. Fortunately, the CAA's regulatory structure enables me

to infer the missing information. For example, suppose a plant within a nonattainment county for

PM2:5 receives aPM2:5 permit, and the associated regulatory program is identi�ed as the CAA

State Implementation Plan. It logically follows that the plant obtained the permit after the county

transitioned into nonattainment status. Thus, by examining county nonattainment status alongside

the corresponding regulatory programs, I can infer the timing of regulatory interventions.9 To focus

on the impact of the 1997 CAA Expansion on employment in regulated sectors, I limited the sample

to plants holding permits for emissions that contribute to ozone and/or PM2:5.10 Lastly, I aggregate

the plant-level data into sector-level categories using three-digit NAICS codes following Greenstone

(2002), Kahn and Mansur (2013) and Curtis (2020).

The Quarterly Workforce Indicators (QWI)

The Quarterly Workforce Indicators (QWI) provide detailed information on local labor market

conditions by county, industry, and worker demographics. The primary underlying source �le is the

Longitudinal Employer-Household Dynamics (LEHD) dataset, which links employers to employees,

covering over 95% of U.S. private sector jobs. This linkage enables the QWI to provide labor market

7Figure 10 in Appendix A.I the counties with outdoor monitors in the US.
8See for details about the placement of outdoor monitors.
9To classify a plant as regulated, I followed the criteria outlined by Walker (2013). A plant is considered regulated

if it holds any of the following permits within the Air Program Code �eld of the AFS database: Title V Permit, State
Implementation Plan (SIP) Source, SIP Source under federal jurisdiction, Prevention of Signi�cant Deterioration
(PSD) permit, New Source Review (NSR) permit, or New Source Performance Standards (NSPS) permit.

10 Ground-level ozone is created through the interaction of volatile organic compounds (VOC) and nitrogen oxides
(NOx). Hence, plants holding operating permits for VOCs and/or NOx are de�ned as polluters of ozone. Table 7 in
Appendix A.II shows the percentage of permits held by sectors in the estimation sample and the U.S.
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data by worker age, sex, educational attainment, and race/ethnicity, allowing for demographic-

speci�c analysis within labor markets or industries. Moreover, the QWI uses worker-�rm links to

track worker 
ows, including hiring and separation rates by industry. I aggregate the quarterly data

into annual �gures for employment, earnings, hiring, and separation rates, categorized by county,

NAICS 3-digit sector, and worker education level.11

The 2000 U.S. Census

I use the 5 percent sample of the 2000 U.S. Census from the Integrated Public Use Microdata

Series (IPUMS) to construct estimates of population, labor force distribution by education level,

and housing rents at the commuting zone level. The data provide individual-level information on a

wide range of demographic and economic characteristics for over 14 million individuals in the U.S.,

including labor force status, education level, age, housing costs, and housing characteristics. The

lowest level of geography identi�ed in the 2000 Census is the Public Use Microdata Area (PUMA)

level. I use a crosswalk from PUMAs to counties to aggregate the microdata to the commuting

zone level, which is the geographic unit of analysis in Section 6.12

Current Population Survey

I construct worker 
ows by sector and education level using data from the Current Population

Survey (CPS). Although the CPS reports data at the county level, its limited sample size makes it

challenging to identify many counties. To address this, I use data from metropolitan statistical areas

(MSAs) that correspond to the commuting zones of interest.13 I average the monthly worker 
ow

rates from 1998 to 2003 to enhance the accuracy of the estimates and then convert them to a yearly

frequency. Additionally, I gather data on average weekly hours worked at the sector-education

level.

National Emission Inventory

The EPA's National Emissions Inventory (NEI) provides data on air pollution emissions from all

sources at the county-sector level. I use data from the NEI on emissions of precursors toPM2:5

and ozone, focusing on point and area sources in 2001.14 I restrict the sample to emissions from

the manufacturing sectors by using detailed information on source classi�cation codes (SCC) and

industry classi�cation codes (6-digit NAICS) available in the NEI �les.

Finally, I gather information on local sectoral economic activity from the Bureau of Economic

11 The length of QWI longitudinal data varies by state. I use data from the forty-three states whose data go back
to at least 2001. The states excluded are Alaska, Arizona, Arkansas, Hawaii, Massachusetts, Mississippi, and New
Hampshire. In addition, The District of Columbia and the US territories are excluded. Furthermore, I excluded the
county-sector pairs with observations less than four quarters of a given year.

12 Please see Appendix A.III for the matching of PUMAs in the 2000 U.S. Census to the 2000 Commuting Zones,
following Dorn (2009).

13 Kuhn et al. (2021) demonstrate that worker 
ows and unemployment rates at the CZ and MSA levels exhibit
similar trends.

14 The precursors to P M 2:5 and ozone, which are also utilized in the Air Pollution Emission Experiments and
Policy Version 3 (AP3) model, include ammonia ( NH 3), nitrogen oxides (NO x ), �ne particulate matter ( P M 2:5),
sulfur dioxide ( SO2), and volatile organic compounds (VOCs) (Muller and Mendelsohn (2009), Muller et al. (2011)).

9



Analysis (BEA) Regional Economic Accounts. This data provides sectoral payroll information and

GDP per worker at the county level.

4 Causal Evidence on Employment E�ects of Regulation

I estimate how the 1997 expansion of ozone andPM2:5 standards a�ected the employment out-

comes of di�erent education groups in regulated sectors of nonattainment counties. This requires

accounting for observed and unobserved di�erences at sectoral and county levels. I control for these

potential confounders by developing a triple-di�erence design.

Institutional features of the 1997 CAA Expansion may cause treatment e�ects to be heteroge-

neous across groups and across time, presenting well-known econometric challenges. As explained in

section 2, the timing for Ozone andPM2:5 regulations di�ered, which could lead to heterogeneous

treatment e�ects. 15 Further, some sector-county pairs are subject to regulation under both the

ozone andPM2:5 standards, resulting in multiple treatments with variation in treatment timing.

This raises a potential concern that one treatment may contaminate estimates for the e�ect of the

other. Overall, these institutional features make it crucial to allow for heterogeneous treatment

e�ects in a way that mitigates the various threats to causal inference.

These econometric issues have been addressed for the context of the canonical di�erence-

in-di�erences and two-way �xed e�ect estimators (Roth et al. (2023), Borusyak et al. (2021),

De Chaisemartin and d'Haultfoeuille (2020), Sun and Abraham (2021), Goodman-Bacon (2021),

Callaway and Sant'Anna (2021), Athey and Imbens (2022)). In contrast, their implications for triple

di�erence (DDD) estimation have received much attention (Borusyak et al. (2021), De Chaise-

martin and d'Haultfoeuille (2024)). 16 Therefore, I extend the work of Callaway and Sant'Anna

(2021) and De Chaisemartin and D'haultf�uille (2023) to the DDD setting to develop an estimator

that accounts for multiple time periods, variations in treatment timing, and several treatments.

My empirical strategy is based on the potential outcomes framework and aims to identify the

group-time average treatment e�ect. Speci�cally, I aim to answer the following questions: (i) What

is the average treatment e�ect of regulation on the treated? (ii) What is the treatment e�ect of

ozone and/or PM2:5 regulation on the treated? (iii) How do treatment e�ects vary with treatment

duration?

4.1 Empirical Framework

I consider 11 years,t 2 f 2001,....,2011g and n sectors i=1,...., n. My primary goal is to identify

group-time average treatment e�ects, where a group,g, is de�ned by the �rst time sector i is

15 In the presence of heterogeneous treatment e�ects, the parameter of interest would be a potentially non-convex
weighted average of the parameters of each group, and weights could be negative for some groups. This also may
present a concern with multiple time periods if treatment e�ects vary across time. See Roth et al. (2023) for a
comprehensive literature review.

16 Sant'Anna also discusses extending the di�erence-in-di�erences framework, presented in Callaway and Sant'Anna
(2021), into a triple di�erence setup in Sant'Anna (2023).
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treated. Though regulations are imposed at the county level, they apply selectively to sectors.

Only the sectors classi�ed as \polluting" for a particular pollutant in nonattainment counties are

regulated. Thus, classi�cation into treatment groups depends on both the county's regulatory

status for a pollutant and the sector's classi�cation as a polluter.

I examine two binary treatments: ozone andPM2:5 standards. For each sectori, gi = ( gi; 1, gi; 2) 2

f 0; 2004g � f 0; 2005g denotes when sectori was �rst regulated for ozone and PM2:5, respectively.

The vector g can take four distinct values, namely g 2 f (2004,0), (0,2005), (2004,2005) (0,0)g,

where, for example, g = (2004,0) denotes sectors treated for ozone starting in 2004 but never

treated for PM 2:5. By grouping sectors into these four categories, I can analyze the impact of each

treatment independently and in combination.

County regulatory status is denoted byC = ( c1,c2). Here, c1 2 f 0; 2004g indicates when a county

is �rst regulated for ozone and c2 2 f 0; 2005g indicates when a county is �rst regulated for PM2:5.

Within each set of counties, sectors are partitioned into polluting (P) and non-polluting ( NP)

groups for ozone andPM2:5, denoted by L 2 f P; NP g. The partition P includes sectors identi�ed

as polluting for Ozone,PM2:5, or both, whereasNP includes sectors classi�ed as non-polluting for

either or both pollutants. To clarify the notational distinction between c and g, consider a simple

example: Sectori belongs to the group treated only for ozone,g = (2004; 0) if and only if the

regulatory status of the county to which sector i belongs isC = g = (2004; 0) and sector i falls into

partition L = P for ozone. If sectorj in the same county is only classi�ed as a polluter ofPM2:5,

despite having C = (2004; 0), unit j would not be considered as belonging tog = (2004; 0) since

L = NP for ozone.

To de�ne the average treatment e�ect on the treated, let Y i;t (g) be the potential outcome for

sector i at time t in group g. Speci�cally, Y i;t (g) equals the log of employment either for workers

with a college degree or higher or for those with a high school diploma or lower. The group-time

average treatment e�ects for g, ATT(g,t) is de�ned:

ATT (g; t) = E[ Yt (g1; g2)jC = g;L = P] � E[Yt (0; 0)jC = g;L = P] (1)

ATT((2004,0),t) represents the average group time treatment e�ect of ozone standards in time

period t, among sectors that are only regulated in 2004 for ozone and sit in a county that is only

regulated for ozone. Similarly, ATT((0,2005),t) represents the average group time treatment e�ect

for PM2:5. ATT((2004,2005),t) represents the average group time treatment e�ect of regulation for

both ozone andPM2:5 standards for this group.17

17 If we want to distinguish the e�ect of ozone from the e�ect of P M 2:5 on the sectors treated for both, the group-time
average treatment e�ect for P M 2:5 is the following:

AT T (g; t) = E[ Yt (2004; 2005)jC = g;L = P ] � E[Yt (2004; 0)jC = g;L = P ]

which requires additional identifying assumptions, as discussed in Appendix B.II. Unfortunately, I cannot identify
the e�ect of ozone on this group separately. See De Chaisemartin and D'haultf�uille (2023) for further results for
cases with several treatments.
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4.2 Identifying Assumptions

Let D p
i;t be the treatment indicator for sector i at time t for pollutant p, where D p

i;t = 1 if sector i

is treated at time t and D p
i;t = 0 otherwise. The �rst identifying assumption is that treatment is

irreversible:

Assumption 1: (Irreversibility of treatment) D p
i;t =0 for t = f 2001; 2002; 2003g, 8i = 1 ; ::::; n and

for p = f Ozone, PM2:5g and for t � 2004

D p
i;t � 1 = 1 implies that D p

i;t = 1

Assumption 1 states that no one is treated beforet = 2004 and that once a sectori begins to be

treated for a speci�c pollutant, it continues to be treated in all subsequent periods.18

The second identifying assumption is limited treatment anticipation, meaning that unit treat-

ment e�ects are zero for some period before treatment occurs. The announcement of new standards

in 1997 was followed by lawsuits that created doubt that the regulation would be implemented.19

After the Supreme Court upheld the regulation, the EPA �rst asked counties to report monitoring

data and self-certify their regulatory status in 2003. The EPA used these data to designate coun-

ties for ozone in 2004 and forPM2:5 in 2005.20 Therefore, I assume that the potential anticipation

period is one year for counties regulated for ozone and two years for those regulated forPM2:5.

Assumption 2: (Limited Treatment Anticipation) There is a known � � 0 such that

E[Yt (g)jC = g;L = P] = E[ Yt (0)jC = g;L = P] for all g such that t < g � �

where � =1 for ozone and � =2 for PM2:5. Assumption 2 restricts anticipation of the treatment to

be, at most, one year for the sectors treated for ozone and two years for the sectors treated for

PM2:5.

The third assumption is a version of parallel trends for triple-di�erence based on \never-treated"

sectors:

Assumption 3: (Parallel Trends for Triple-di�erence Based on \Never-treated" Groups) Let �

be de�ned as in Assumption 2. For all g and t � g � � ,

E[Yt (0; 0) � Yt � 1(0; 0)jC = g;L = P] � E[Yt (0; 0) � Yt � 1(0; 0)jC = g;L = NP ]

=

E[Yt (0; 0) � Yt � 1(0; 0)jC = 0 ; L = P] � E[Yt (0; 0) � Yt � 1(0; 0)jC = 0 ; L = NP ]

18 Even though a county's regulatory status switches from nonattainment to attainment after it complies with the
standards, the treated plants still have the lowest achievable emission technologies speci�ed in SIPs, and a Limited
Maintenance Plan can be implemented to continue compliance.

19 See \The US Court of Appeals for the D.C. Circuit Decision on EPA's Public Health Air Standards for Smog
and Soot"

20 The EPA used the annual fourth-highest daily maximum 8-hour concentration for ozone averaged over 2001-2003,
while they considered the annual mean for P M 2:5 over 2001-2003.
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In words, the di�erence in the evolution of average untreated outcomes among sectors with

L = P and L = NP in the treated counties is the same as the di�erence of the evolution of average

untreated outcome among sectors withL = P and L = NP in the untreated counties in the absence

of treatment. Finally, the ATT(g,t) estimands using the never-treated group as a comparison group

can be rewritten as follows:

ATT (g; t) =
��

E[Yt jC = g;L = P] � E[Yg� 1jC = g;L = P]
�

�
�

E[Yt jC = g;L = NP ] � E[Yg� 1jC = g;L = NP ]
��

�
��

E[Yt jC = 0 ; L = P] � E[Yg� 1jC = 0 ; L = P]
�

�
�

E[Yt jC = 0 ; L = NP ] � E[Yg� 1jC = 0 ; L = NP ]
��

(2)

4.3 Implementation

To identify the group-time average treatment e�ects, I split sectors into those with L = P and

those with L = NP for a speci�c pollutant. Among those with L = P, I �rst estimate the \pseudo-

ATT(g,t)'s", using treatment status. Then, I repeat the same step for L = NP . Finally, I take the

di�erence of these two di�erences. More speci�cally, I subtract the \pseudo- ATT(g,t)'s" for the

units with L = NP from those with L = P. The �nal di�erence is the triple-di�erence estimator

for the ATT(g,t). 21 For inference, I bootstrap the standard errors and cluster at the county level

to allow for potential correlation across sectors within the same county. Observations are weighted

by the total employment for each county-sector pair in 2001.

Finally, I aggregate the group-time average treatment e�ects to calculate the interested e�ect

of regulations:

� =
X

g2G

X

t

! (g; t)xATT (g; t) (3)

where � is the ATT, calculated as a weighted average of ATT(g,t) estimated in Equation 2.

4.4 Summary Statistics

The estimation sample is constructed using local labor market data from the Quarterly Workforce

Indicators (QWI), sector pollution status from the Air Facilities System (AFS) Data, and county

nonattainment status from the EPA's Green Book and AirNow �les. These datasets were merged

using FIPS county codes and three-digit NAICS sector codes. The sample is restricted to county-

sector pairs with annual data on college and high-school employment for the entire study period.22

21 The partition-speci�c DiDs do not have a causal interpretation under these assumptions.
22 County-sector pairs with fewer than eleven years of observations were excluded. The QWI data suppressed

observations that did not meet US Census Bureau publication standards for information disclosure. The average
annual employment for the excluded observations was 19 workers, calculated from the available years. These sectors
likely had fewer workers in the missing years, and small sectors are less likely to be signi�cantly impacted by regulation.
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This results in a balanced panel of 17,785 county-sector pairs in 2001, which are tracked over the

next ten years. The sample includes 524 counties covering 17% of the U.S. population in 2000.23

Table 8 in Appendix B.I compares the sectoral composition of employment in the estimation sample

with that of the U.S. in 2001, showing that the sample closely mirrors the sectoral employment

shares of the broader economy.24

Table 1 presents summary statistics for polluting and nonpolluting sectors of attainment counties

and counties that switched to nonattainment status with the 1997 CAA Expansion; summary

statistics are reported before the regulation in 2001. Panel A reports statistics for all workers,

while Panels B and C divide the sample into college graduates and high school graduates and

below.25 Panels B and C summarize statistics for workers aged 25 and older because The QWI

does not report the education levels of workers who are 24 or younger.

Panel A shows substantial di�erences between polluting and nonpolluting sectors within each

group of counties. First, the polluting sectors are larger than the nonpolluting sectors. Second,

workers in polluting sectors tend to earn higher wages than their counterparts in nonpolluting

sectors; the college graduates in polluting sectors earn 26% more than those in nonpolluting sectors,

while the di�erence is 28% for high school and below. Third, nonpolluting sectors have lower hiring

and separation rates than polluting sectors. These observed di�erences suggest that it may also be

important for the research design to control for unobserved di�erences across sectors.

Further, workers in nonattainment counties, which tend to be more urban and economically

larger, earn relatively higher wages than those in attainment counties, more than 10% on aver-

age. This makes it important for the research design to address heterogeneity across counties,

especially since the Great Recession occurred shortly after the designation of nonattainment coun-

ties. Di�erential impacts of the recession on switch counties and attainment counties could bias

between-county comparisons of the e�ects of regulation on polluting sectors. This underscores why

it is important that the estimation accounts for unobservable characteristics of sectors and counties.

4.5 Results

Table 2 presents the average treatment e�ect of regulations on employment in treated sectors of reg-

ulated counties. The coe�cients are constructed by aggregating the estimated average group-time

treatment e�ects using Equation 3. Panel A reports results for individuals with a college education

23 The sample excludes counties without outdoor monitors and those regulated for previous standards. Nonattain-
ment counties regulated before the 1997 Expansion have a higher population on average, as shown in Table 9, and
those counties cover 69% percent of the U.S. population.

24 Additionally, the table provides a comparison of the educational composition within sectors, indicating the shares
of workers with college degrees and above, as well as those with high school degrees and below, in both the sample
and the U.S. as a whole.

25 See Table 9 for extended summary statistics for attainment counties, nonattainment counties that were regulated
before the 1997 CAA Expansion, and counties that switched to nonattainment status with the 1997 Expansion in
2001. The counties that switched o� the treatment before 1994 are included in the switched counties. The table also
reports summary statistics for some college graduates.
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Table 1: Summary Statistics Before the Regulation (2001)

Attainment Switch into Nonattainment
Nonpolluting Polluting Nonpolluting Polluting

Panel A: Full Sample
Employment (Median county-by-sector) 334 544 352 684
Average Monthly Earnings ($) 2,233 2,776 2,367 3,093
Hiring Rate 0.16 0.11 0.15 0.09
Separation Rate 0.16 0.12 0.16 0.10
Total Employment 8,685,444 3,725,048 3,728,670 2,430,348
Panel B: College and Above
Average Monthly Earnings ($) 3,222 3,968 3,508 4,450
Hiring Rate 0.13 0.09 0.13 0.07
Separation Rate 0.14 0.11 0.13 0.09
Total Employment 1,733,883 912,294 769,989 653,781
Panel C: High School and Below
Average Monthly Earnings ($) 1,971 2,446 2,059 2,693
Hiring Rate 0.14 0.10 0.13 0.08
Separation Rate 0.14 0.11 0.14 0.10
Total Employment 2,998,279 1,315,952 1,280,818 853,039
# of County x Sector 9,729 2,589 4,238 1,229

Note: This table reports the summary statistics for polluting and nonpolluting sectors in switched and attainment
counties. Panel A reports summary statistics for all workers. Panels B and C divide the sample into college graduates
and high school and below graduates over 24 years old.

or higher, while Panel B presents results for those with a high school education or lower.26 Col-

umn (1) shows the average treatment e�ect of regulation on employment, aggregating the average

group-time treatment e�ects of ozone alone,PM2:5 alone, and both regulations together. Columns

(2) and (3) separately report the average treatment e�ects for ozone andPM2:5, respectively, while

Column (4) shows the average treatment e�ect of both regulations on employment.

Column (1) indicates that the 1997 Expansion led to a 3.6% reduction in college employment

in regulated sectors, with a 1.8% decrease in sectors regulated only for ozone (Column (2)) and a

2.6% drop in sectors regulated for PM2:5 (Column (3)). However, these �ndings are statistically

insigni�cant. Interestingly, employment among college graduates in sectors regulated for both

pollutants declines by nearly 9%. In contrast, employment among individuals with a high school

degree or less decreases by 7.6% in regulated sectors. Speci�cally, noncollege employment fell by

6.7% in sectors regulated only for ozone and by 10% in those regulated only for PM2:5. Notably,

the average treatment e�ect of both regulations indicates a 7% drop in employment for this group.

These results suggest that environmental regulations have a more pronounced negative impact on

employment for less-educated workers in regulated sectors. Moreover, there is signi�cant variability

in the impact of regulations, highlighting treatment heterogeneity.

26 To align with the skill de�nition in the model, I only report two education categories. Appendix B.III provides
the results for employment among workers with some college experience but no degree or associate degree.
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Table 2: The E�ect of Regulation on Employment

Regulation Ozone PM2:5 Both
(1) (2) (3) (4)

Panel A: College and Above
-0.036 -0.018 -0.026 -0.088***
(0.023) (0.040) (0.024) (0.022)

Panel B: High-School and Below
-0.076*** -0.067*** -0.100*** -0.069***
(0.023) (0.034) (0.040) (0.023)

Observations 195,635 164,582 144,023 140,899

Note: This table reports the average treatment e�ect of regulations on the employment levels in treated sectors in
regulated counties, which is constructed by aggregating the average group-time treatment e�ects using Equation 3.
Panel A reports the employment results among individuals with a college education or higher, while Panel B presents
results for those with a high school education or less. Bootstrapped standard errors (N=1000) are in parentheses and
are clustered at the county level. The number of observations di�ers between columns because the treatment group
varies with each group speci�cation.

Dynamic E�ects of Treatment: I plot the estimated average group-time treatment e�ect to

understand how treatment e�ects vary with treatment duration. Figure 2 illustrates the dynamic

e�ects of regulation on college and noncollege employment. It is natural to expect the e�ects to

evolve over time because it often takes some time to develop and implement State Implementation

Plans to reduce pollution (Curtis (2020)). Trends in employment in the regulated and unregulated

sectors for the years prior to treatment are similar, as re
ected by statistically insigni�cant pretend

di�erences. For college graduates, employment begins to decline �ve years after treatment, reaching

7.4% after eight years. For noncollege graduates, employment in treated sectors starts declining

around four years post-regulation, reaching a 13% reduction by year eight.

To explore treatment e�ect heterogeneity, Figure 3 plots the dynamic e�ects of ozone regulation

alone, PM2:5 regulation alone, and both regulations together for college and noncollege employ-

ment. By the end of the study period, the ozone regulation caused an approximate 6% (statistically

insigni�cant) decline in employment for college graduates and a 12% decline for noncollege gradu-

ates. Moreover, college-educated workers in polluting sectors of counties regulated forPM2:5 did

not experience a signi�cant decrease in employment. However, non-college-educated employment

began to fall right after the PM2:5 designation, eventually dropping 17% below 2003 employment

levels. This suggests that non-college-educated workers were more adversely a�ected byPM2:5

regulations than their college-educated counterparts.

Finally, for polluting sectors within counties regulated for both pollutants, college employment

declined by 15% seven years after designation, while non-college employment dropped by 11% over

the same period. This deviation from the prior trends, where non-college-educated workers typ-

ically experience more signi�cant declines, highlights the variability in regulatory impact based

on treatment heterogeneity and intensity. One potential explanation is that marginal abatement
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